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Abstract

The stationary responses of vibro-impact Duffing oscillator excited by additive Gaussian white noise are studied by

using the quasi-conservative averaging method. With the help of a non-smooth variable transformation and the Dirac

delta function, the response probability density functions (PDFs) are formulated analytically. Meanwhile, the results are

validated numerically using Monte Carlo simulations.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Many non-smooth factors arise very naturally in engineering applications [1,2], such as impacts, collisions,
dry frictions and so on. In the last few years, a considerable amount of research activity has focused on
non-smooth dynamical systems. Using a local Pioncaré map, Shaw and Holmes [3], Nordmark [4–6], Luo
[7–9] and Weger et al. [10,11] explored the bifurcation of piecewise linear systems and vibration systems with
constraints, respectively. Feng [12,13] explored the mean response of non-smooth systems by using the mean
Poincaré map. Huang et al. [14] obtained the stationary responses of a multi-degree-of-freedom vibro-impact
system under white noise excitations according to the Hertz contact law. An important contribution into
theory of vibration systems with impact had been made by Zhuravlev [15], who proposed a non-smooth
variable transformation to deal with non-smooth characteristics, based on which, recently, Dimentberg
[16–18] and Iourtchenko [19,20] explored impact energy losses for linear vibration systems with impact and the
response probability density functions (PDFs) of stochastic linear systems with impact numerically.
Namachchivaya [21,22] developed an averaging approach to study the dynamic actions of a vibro-impact
system excited by random perturbations.

Non-smooth dynamics with impacts are always trouble with their inherent difficult of analytical study. The
difficulties depend on the additional finite relations between impacts and rebound velocities. On one hand, the
impact instants are not known in advance, but are rather state-dependent, i.e., governed by the equations of
motion. So it is reasonable that the impact instants are depicted by constraints which depend on the state of
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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systems. On the other hand, the impact instants govern the corresponding velocity jumps, i.e., the differential
equations of motion on the impact instants are complemented by impact conditions. The previous literatures
fastened on the study of either nonlinear smooth systems or non-smooth systems which vector field itself is
linear. Particularly, it is an interesting work to consider the responses of non-smooth nonlinear systems driven
by random noise.

This paper is organized as follows. In Section 2, the transformed system is obtained by using a non-smooth
transformation and the Dirac delta function. In Section 3, the quasi-conservative averaging method [23,24] is
used to deal with the corresponding transformed smooth system with Dirac delta function. In Section 4,
numerical simulations are also used to verify analytical results. A conclusion is presented in the last section.

2. The non-smooth transformation

Consider Duffing system with impacts, the corresponding differential equation of motion is as follows:

x
��
þaxþ b x

�
þcx3 ¼ f xðtÞ; x40, (1)

x
�

þ ¼ �rx
�

�; x ¼ 0, (2)

where the constraint equation is

hðx;x
�
Þ ¼ x ¼ 0 (3)

and the impact condition is

x
�

þ ¼ �rx
�

�; where 0orp1. (4)

x(t) is a Gaussian white noise satisfied

hxðtÞi ¼ 0; hxðtþ tÞxðtÞi ¼ dðtÞ.

Here a, b, c, f are constants, r is the restitution coefficient, x
�

þ, x
�

� are the velocities of system after and
before impacts, respectively. Motion of system is ‘‘freedom’’ until the constraint Eq. (3) is satisfied and the
impact condition (4) is then imposed. The instant of impact t* corresponding to x ¼ 0, namely, xðt�Þ ¼ 0, is
not known in advance. Obviously, when value of (1�r) approaches to zero, the impact losses of system
becomes very small, this means that the system is quasi-conservative one and the quasi-conservative averaging
method is valid here. Firstly, a non-smooth transformation of state variables is introduced

x ¼ x1 ¼ jyj; x
�
¼ x2 ¼ y

�
sgny; x

��
¼ y
��
sgny, (5)

sgny ¼
1; y40;

�1; yo0:

(

When Eq. (5) is introduced in Eqs. (1) and (2), we can obtain, respectively,

y
��
þayþ b y

�
þcy3 ¼ f xðtÞsgnðyÞ; tat�, (6)

y
�

þ ¼ ry
�

�; t ¼ t�. (7)

Obviously, the jump of the transformed velocity becomes proportional to 1�r instead of 1+r for the
original argument x. Assume that only one impact present in a period of system. It is reasonable to consider
Eq. (7) as an additional impulsive damping of Eq. (6) since the jump of the velocity only appears at the
instants of impacts, the additional term ðy

�

� � y
�

þÞdðt� t�Þ can be obtained from Eq. (7) by using the Dirac
delta function d(y). Using the following relations:

dðt� t�Þ ¼ j y
�
jdðyÞ; ðy

�

� � y
�

þÞdðt� t�Þ ¼ ð1� rÞ y
�
j y
�
jdðyÞ. (8)

Eqs. (6) and (7) can be incorporated into

y
��
þayþ b y

�
þcy3 ¼ f xðtÞsgnðyÞ � ð1� rÞ y

�
j y
�
jdðyÞ. (9)
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Thus, the original system with impact was reduced to one without impact expressed by Eq. (9). The second
term ð1� rÞ y

�
j y
�
jdðyÞ on the right-hand side of Eq. (9) can be regarded as an impulsive damping term. When

the coefficients of all excited terms are proportional to small parameter, the transformed system permits strict
analytical study by some asymptotic methods of averaging over a period.

3. Quasi-conservative averaging

Now we consider the transformed system (9) by using the quasi-conservative averaging method
as long as the different value between the input energy of random excitation and the loss energy of
damping is smaller than the total energy of the system. Firstly, Eq. (9) is equivalent to a pair of first-order
equations:

y
�

1 ¼ y2,

y
�

2 ¼ �ay1 � by2 � cy3
1 þ f xðtÞsgnðy1Þ � ð1� rÞy2jy2jdðy1Þ. ð10Þ

This can be converted to the Itô-type stochastic differential equations as follows:

dy1 ¼ y2 dt,

dy2 ¼ ½�ay1 � by2 � cy3
1 � ð1� rÞy2jy2jdðy1Þ�dtþ f sgnðy1ÞdW ðtÞ. ð11Þ

The corresponding total energy function and the potential function of system are, respectively,

H ¼
y2
2

2
þUðy1Þ, (12)

Uðy1Þ ¼
a

2
y2
1 þ

c

4
y4
1. (13)

Inserting Eq. (12) with respect to t, and combining the result with Eq. (10), we obtain

H
�

¼ �ð1� rÞy2
2jy2jdðy1Þ � by2

2 þ f xðtÞy2 sgnðy1Þ. (14)

Obviously, When the parameters (1�r), b and f are small, y1 and y2 are two fast varying random process
while H is a slowly varying random process, which may be approximated by a Markovian process governed by
the Itô stochastic differential equation

dH ¼ mðHÞdtþ sðHÞdW ðtÞ, (15)

where the square of drift coefficients is

mðHÞ ¼ �ð1� rÞy2
2jy2jdðy1Þ � by2

2 þ
1
2
f 2 (16)

and the diffusion coefficients is

s2ðHÞ ¼ f 2y2
2. (17)

The corresponding mean equation of Eq. (9) can be obtained by using the quasi-conservative
averaging procedure. It is important to note that the impulsive damping term should be averaged
over a half-period since there are two impacts in each period. Averaging the drift and diffusion coefficients,
we obtain

mðHÞ ¼ hmðHÞit ¼
1

TðHÞ

Z A

�A

½mðHÞ�
y2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H�2Uðy1Þ
p þ ½mðHÞ�

y2¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H�2Uðy1Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2H � 2Uðy1Þ
p dy1

¼
1

T1=4ðHÞ
ð�SðHÞ � bRðHÞ þ

1

2
f 2T1=4ðHÞÞ, ð18Þ
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s2ðHÞ ¼ hs2ðHÞit ¼
1

TðHÞ

Z A

�A

½s2ðHÞ�
y2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H�2Uðy1Þ
p þ ½s2ðHÞ�

y2¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H�2Uðy1Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2H � 2Uðy1Þ
p dy1

¼
f 2

T1=4ðHÞ
RðHÞ, ð19Þ

where

SðHÞ ¼ ð1� rÞH, (20)

RðHÞ ¼

Z A

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H � 2Uðy1Þ

p
dy1 and

qR

qH
¼ T1=4, (21)

TðHÞ

4
¼ T1=4ðHÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ cA2

p F K ;
p
2

� �
, (22)

where A is the positive root of the following equation:

UðAÞ ¼ H. (23)

F ðK ;p=2Þ is the complete elliptic integral of the first kind, which is defined as

F K ;
p
2

� �
¼

Z p=2

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2 sin2 y

p dy. (24)

And K is its modulus, in the present case

K ¼
A

ffiffiffi
c
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aþ 2cA2
p . (25)

We obtain the corresponding mean Itô differential equation of Eq. (15) instead of the drift coefficients and
the diffusion coefficients as follows:

dH ¼ mðHÞdtþ sðHÞdW ðtÞ.
Fig. 1. Stationary PDFs of the total energy p(H).
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The corresponding mean FPK equation of above equation is

qp

qt
¼ �

q
qH
½mðHÞp� þ

1

2

q2

qH2
½s2ðHÞp�. (26)

The exact solution of the mean FPK Eq. (26) is desired but very difficult to obtain by far because of
nonlinear factors. We seek the stationary solution, namely, qp=qt ¼ 0 in Eq. (26). Then, we can obtain

pðHÞ ¼ C e�lðHÞ. (27)

When the boundary conditions are

0ppo1; H ¼ 0;

p! 0;
dp

dH
! 0; H !1;

8<
: (28)
Fig. 2. Stationary PDFs of the displacement pX1
ðx1Þ: (a) f ¼ 1 and (b) r ¼ 0.99.
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where the symbol ‘-’ means the limit operation. In Eq. (27) C is the normalization constant and l(H) is as
follows:

lðHÞ ¼
2bH

f 2
þ

21

f 2

Z H

0

SðxÞ

RðxÞ
dx� ln

T1=4ðHÞ

T1=4ð0Þ
. (29)

The stationary unite PDF of variable y1 and y2 can be obtained easily by using Eqs. (12) and (13)

pY1Y2
ðy1; y2Þ ¼

pðHÞ

TðHÞ

����
H¼ðy2

2
=2Þþða=2Þy2

1
þðc=4Þy4

1

. (30)

By using the transformation formula (5), the stationary unite PDF of the original variable x1 and x2 can be
obtained

p
�
ðx1;x2Þ ¼ pY1Y2

ðx1;x2Þ þ pY1Y2
ð�x1;�x2Þ. (31)
Fig. 3. Stationary PDFs of the velocity pX2
ðx2Þ: (a) f ¼ 1 and (b) r ¼ 0.99.
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We know that the PDF pY1Y2
ðy1; y2Þ is symmetrical from Eqs. (12), (13) and (30), the PDF p

�
ðx1;x2Þ can be

rewritten as

p
�
ðx1; x2Þ ¼ 2pY1Y2

ðx1;x2Þ: x1X0. (32)

The corresponding PDF of variable x1 and x2 is as follows, respectively,

pX1
ðx1Þ ¼

Z
R

s p
�
ðx1; sÞds, (33)

pX2
ðx2Þ ¼

Z
Rþ

s p
�
ðs;x2Þds. (34)

4. Numerical results

In this section, we compare the analytical(A) results in Section 3 with numerical simulations by Monte
Carlo (MC) methods which is based of the original system denoted by Eqs. (1) and (2). Here, we set
parameters eb, ec, �1=2f instead of b, c, f, respectively, since the averaging method is only effective for small
perturbations.
Fig. 4. Analytical and numerical results for different values of the restitution coefficient: (a) stationary PDFs of the total energy p(H) and

(b) unite stationary PDFs p
�
ðx1;x2Þ.
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Suppose a ¼ 1, b ¼ 1, c ¼ 1, e ¼ 0.01 in Figs. 1–3. If the noise intensities f are small and the restitution
coefficient r is close to 1, the analytical results agree with the numerical simulations. Fig. 1 demonstrate the
stationary PDFs of the total energy in formula (27) for different values of the restitution coefficient and noise
intensities, it is clear that the increase of the restitution coefficient r or noise intensities f can both lead to the
total energy responses more flat, namely, decrease in the probability that smaller energy of system.

For different values of the restitution coefficient r and noise intensities f, the stationary displacement
responses are displayed in Fig. 2, while the stationary velocity responses are shown in Fig. 3, respectively.
Where, the analytical results are based on formula (33) and (34). Firstly, more close to 1 for the restitution
coefficient r, lower peak of the displacement PDFs in Fig. 2(a) and the velocity PDFs in Fig. 3(a), while the
increase of noisy intensity f lead to decrease of the displacement PDFs in Fig. 2(b) and the velocity PDFs in
Fig. 3(b). Secondly, it can be seen that the displacement PDFs’s peaks appear on place of the constraints, and
the velocity PDFs are symmetry and smooth. It is obvious that the approximate analytical results are close to
the numerical ones in Fig. 3. Fig. 2 reflects that the image is almost identical between analytical results and
numerical simulations.

Let the scale parameter e ¼ 0.1, that is a ¼ 1, eb ¼ 0.1, ec ¼ 0.1, �1=2f ¼ 0:5. When the restitution coefficient
r is small corresponding to the inelastic impact, Fig. 4 provide the stationary PDFs of the total energy and the
unite PDFs of displacement and velocity for different values r. In Fig. 4(a) it is clear that the PDFs’s peaks in
Monte Carlo simulation results are higher than ones in the analytical results as the decrease of the restitution
coefficient r, more details are shown in Fig. 4(b). The problem should be mentioned. On one hand, the smaller
restitution coefficient r leads to the more impact energy losses, the larger noise intensity f should be required to
provide the impact, which may result in the inaccuracy in the approximate averaging method. On the other
hand, when we make simulations, the larger noise intensity f increases numerical difficulty in tracing the exact
instants of impacts, as a result, additional points near the constraints lead to higher peaks. The stationary
unite PDFs in Fig. 4(b) are similar to the truncated ones in the situation without impact. These results
resemble the conclusions as expected for the linear systems.

5. Conclusions

To our knowledge, the study on dynamical systems of linear non-smooth has many valuable results. In the
paper, the effective formulas are presented to investigate the stationary PDFs of responses of a single-degree-
of-freedom vibro-impact oscillator under additive white noise excitation. It has been demonstrated that the
stationary PDFs of the total energy, the displacement, the velocity and the unite PDFs appear the peak near
the constraint place, the effects of the restitution coefficient and noisy intensities are shows numerically.
According to the P-bifurcation concept, no bifurcation occurs in the considered system.

In this paper, the procedures are extensive for single-degree-of-freedom vibro-impact systems and provide
leads for exploring multi-degree-of-freedom vibro-impact systems under stochastic excitation, which appeals
to appearance of the extensive non-smooth transformation.
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